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Abstract:  
 

It has been well recognized that multiple factors, whether individually or in combination, 

contribute to noncontact anterior cruciate ligament (ACL) injury. The ongoing mission of the 

ACL Research Retreat is to bring clinicians and researchers together to present and discuss the 

most recent advances in ACL injury epidemiology, risk factor identification, and injury-risk 

screening and prevention strategies and to identify future research directives. The sixth retreat 

held March 22–24, 2012, in Greensboro, North Carolina, was attended by more than 70 

clinicians and researchers, including representatives from Canada, Iceland, Japan, The 

Netherlands, Norway, and South Africa. The meeting featured keynote presentations and 

discussion forums by expert scientists in ACL injury risk and prevention and 34 podium and 

poster presentations by attendees. Keynotes delivered by Ajit Chaudhari, PhD (The Ohio State 

University), Malcolm Collins, PhD (Medical Research Council and University of Cape Town, 

South Africa), and Tron Krosshaug, PhD (Oslo Sports Trauma Research Center, Norway) 

described their ongoing work related to proximal trunk control and lower extremity 

biomechanics, genetic risk factors associated with ACL injury, and methodologic approaches to 

understanding ACL loading mechanisms, respectively. Discussion forums led by Jennifer 

Hootman, PhD, ATC, FNATA, FACSM (Centers for Disease Control and Prevention) and Scott 

McLean, PhD (University of Michigan), focused on strategies for implementing injury-

prevention programs in community settings and took a critical look at the strengths and 

limitations of motion-capture systems and how we might continue to refine our research 

approaches to increase the relevance and influence of our biomechanical research, respectively. 

Podium and poster presentations were organized into thematic sessions of anatomical, genetic, 

and hormone risk factors; the role of body position in ACL injury risk; pubertal and sex 

differences in lower extremity biomechanics; injury-risk screening and prevention; and 

methodologic considerations in risk factor research. Substantial time was provided for group 

discussion throughout the conference. From these discussions, the 2010 consensus 

statement1 was updated to reflect recent advances in the field and to chart new directions for 
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future research. Following is the updated consensus statement. The presentation abstracts 

organized by topic and presentation order appear online 

at http://nata.publisher.ingentaconnect.com/content/nata/jat. 
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Article:  
 

It has been well recognized that multiple factors, whether individually or in combination, 

contribute to noncontact anterior cruciate ligament (ACL) injury. The ongoing mission of the 

ACL Research Retreat is to bring clinicians and researchers together to present and discuss the 

most recent advances in ACL injury epidemiology, risk factor identification, and injury-risk 

screening and prevention strategies and to identify future research directives. The sixth retreat 

held March 22–24, 2012, in Greensboro, North Carolina, was attended by more than 70 

clinicians and researchers, including representatives from Canada, Iceland, Japan, The 

Netherlands, Norway, and South Africa. The meeting featured keynote presentations and 

discussion forums by expert scientists in ACL injury risk and prevention and 34 podium and 

poster presentations by attendees. Keynotes delivered by Ajit Chaudhari, PhD (The Ohio State 

University), Malcolm Collins, PhD (Medical Research Council and University of Cape Town, 

South Africa), and Tron Krosshaug, PhD (Oslo Sports Trauma Research Center, Norway) 

described their ongoing work related to proximal trunk control and lower extremity 

biomechanics, genetic risk factors associated with ACL injury, and methodologic approaches to 

understanding ACL loading mechanisms, respectively. Discussion forums led by Jennifer 

Hootman, PhD, ATC, FNATA, FACSM (Centers for Disease Control and Prevention) and Scott 

McLean, PhD (University of Michigan), focused on strategies for implementing injury-

prevention programs in community settings and took a critical look at the strengths and 

limitations of motion-capture systems and how we might continue to refine our research 

approaches to increase the relevance and influence of our biomechanical research, respectively. 

Podium and poster presentations were organized into thematic sessions of anatomical, genetic, 

and hormone risk factors; the role of body position in ACL injury risk; pubertal and sex 

differences in lower extremity biomechanics; injury-risk screening and prevention; and 

methodologic considerations in risk factor research. Substantial time was provided for group 

discussion throughout the conference. From these discussions, the 2010 consensus 

statement1 was updated to reflect recent advances in the field and to chart new directions for 

future research. Following is the updated consensus statement. The presentation abstracts 

organized by topic and presentation order appear online 

at http://nata.publisher.ingentaconnect.com/content/nata/jat. 

 

 

CONSENSUS STATEMENT 
 

As in past retreats, participants were divided into 3 interest groups: anatomical, genetic, and 

hormonal risk factors; neuromechanical contributions to ACL injury; and risk factor screening 

and prevention. Within each group, relevant sections of the previous consensus document were 

discussed and updated as to important knowns and recent advances based on new evidence 

http://nata.publisher.ingentaconnect.com/content/nata/jat
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emerging in the literature and presented at the retreat and important unknowns and future 

directions that are needed to advance our understanding. Working drafts from each group were 

then presented to all participants for further discussion and were recirculated after the meeting 

for further refinement. 

 

From these discussions, the following global observations, themes, and recommendations 

emerged from the 2012 meeting. First, the biomechanical research community should consider 

the degree to which the movement patterns studied during the dynamic activities of risk factor 

screening tests should be expected to correspond with biomechanical loading profiles known to 

be associated with ACL strain. For example, cadaveric work overwhelmingly supports the notion 

that internal rotation of the tibia with respect to the femur loads the ACL; however, we do not 

know if those individuals at risk for future ACL injury commonly move with excessive amounts 

of knee internal rotation during screening tests or on the field. It is entirely possible that those 

individuals may adopt a movement strategy to avoid loading of the ACL or other structures 

during controlled screening tasks that is completely different from the movement strategies they 

use on the field in the course of athletic participation. That is, the movement strategies we 

prospectively identify as risk factors from screening tests may be different than the 

biomechanical mechanisms observed in vitro to increase strain on the ACL. 

 

Another general biomechanical theme was the need to transfer relatively technical biomechanical 

modeling findings into a form that can be more easily accessed by the clinician or practitioner. 

Most importantly, risk factor screenings that incorporate biomechanical data should to some 

degree use clinician- and practitioner-friendly language in the interpretation and explanation of 

the findings. From an injury-prevention perspective, much remains unknown about which 

specific elements of successful injury-prevention programs (movement training, strengthening, 

plyometrics, etc) are necessary to produce the desired protective effects, why these programs are 

limited to short-term success, and to what extent program components need to be age, sex, and 

sport specific. If we are to streamline ACL injury-prevention programs to improve compliance 

and efficacy, thus making them more palatable to the public, high-quality randomized control 

trials are needed to address these critical questions. At the same time, we have yet to effectively 

translate our highly controlled ACL injury-prevention research to real-world community settings 

in which the public health benefit can be maximized.1 To that end, it will be important to identify 

the barriers and facilitators (eg, feasibility, cost, and parent and coach buy-in) to maximize 

acceptance, compliance, and retention of these interventions within the context of these 

community settings. 

 

Finally, as our understanding of this multifactorial problem continues to grow, the need for 

multidisciplinary, multicenter work is becoming more apparent. As a research community, we 

need to leverage our combined resources to bring together interdisciplinary teams and to achieve 

the population sizes needed for integrated examination of these different factors. Developing 

such integrated approaches is not without challenges, and concerted efforts are needed to identify 

and reduce the barriers that impede this important work. 

 

Once again, we find that in the 2 years since the last ACL Research Retreat, many advances in 

our knowledge have reshaped the important unknowns and directions for future research. We 

hope that these proceedings will continue to foster quality research and clinical interventions. 



Anatomical and Structural Risk Factors 

 

The primary anatomical and structural factors examined relative to ACL injury include ACL 

morphology, tibial and femoral surface geometry, knee-joint laxity, and lower extremity 

structural alignments. Most of what is known is based on sex comparisons (driven by females' 

greater susceptibility to ACL trauma) and retrospective ACL-injured case-control studies. 

 

Important Knowns and Recent Advances 

 

1. ACL Structure and Geometry: Compared to noninjured controls, ACL-injured patients 

have smaller ACLs (area and volume).2When compared with males, females have smaller 

ACLs relative to length, cross-sectional area, and volume even after adjusting for body 

anthropometry.3 After adjusting for age and body anthropometrics, the female ACL has 

less collagen fiber density (area of collagen fibers/total area of the micrograph)4 and 

decreased mechanical properties, such as strain at failure, stress at failure, and modulus of 

elasticity.5 

 

2. Knee-Joint Geometry—Tibial Plateau: Magnetic resonance imaging (MRI) studies 

(imaging both the lateral and medial tibial plateaus) demonstrate greater lateral posterior-

inferior tibial plateau slopes (but not necessarily medial tibial slopes)6–9 and reduced 

condylar depth of the medial tibial plateau7 in ACL-injured patients versus controls. 

Compared with males, females have greater lateral and medial posterior-inferior tibial 

slopes10,11 and reduced coronal tibial slopes.10 Biomechanically, greater posterior-inferior 

lateral tibial slopes are associated with greater anterior joint reaction forces,12 greater 

anterior translation of the tibia relative to the femur,13,14 greater peak anterior tibial 

acceleration,15 and when combined with a smaller ACL cross-sectional area, greater peak 

ACL strains.16,182 Greater relative posterior-inferior slope of the lateral versus medial 

tibial plateau has been associated with greater peak knee-abduction and internal-rotation 

angles.12 

 

3. Knee-Joint Geometry—Femoral Notch: Femoral notch dimensions have frequently been 

investigated as ACL injury-risk factors. Authors of the majority of prospective17–20 and 

retrospective studies8,21–23 have generally reported a smaller femoral notch width or notch 

width index in ACL-injured cases. The presence of an anterior medial ridge has also been 

noted on the intercondylar notch in ACL-injured patients versus controls.8 When 

compared with males, the female's femoral notch height is taller, whereas their femoral 

notch angle is smaller, which may influence the femoral notch impingement 

theory.3 Femoral notch width and angle are good predictors of ACL size (area and 

volume) in males but not in females.3 

 

4. Knee-Joint Laxity: Greater magnitudes of anterior knee laxity,20,24,25 genu 

recurvatum,24,26–29 general joint laxity,20,24,26,29,30 and internal-rotation knee laxity31 have 

been reported in the contralateral knee of ACL-injured patients compared with control 

cases. Compared with males, females have greater sagittal-plane knee laxity (anterior 

knee laxity, genu recurvatum),20,24,32–36 greater frontal (varus-valgus rotation)- and 

transverse (internal-external rotation)-plane knee laxity,37–40 and greater general joint 
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laxity.20,24 Sex differences in frontal- and transverse-plane knee laxity persist even when 

males and females have similar sagittal-plane knee laxity.37,39,40 Greater magnitudes of 

knee laxity have been associated with the higher-risk landing strategies more often 

observed in females.32,41–44 

 

5. Lower Extremity Alignment: Lower extremity alignments are different between 

maturation groups and also develop at different rates in males and females between 

maturation groups.45 Fully mature females have greater anterior pelvic tilt, hip 

anteversion, tibiofemoral angle, and quadriceps angles.35,46 No sex differences have been 

observed in tibial torsion,35navicular drop,35,36,46 and rear-foot angle.35,47 Currently, no 

compelling evidence links any one lower extremity alignment factor with ACL injury. 

 

Unknowns and Directions for Future Research 
 

1. Anatomical and structural factors have often been examined independently or in small 

subsets of variables. In order to determine the most important anatomical and structural 

risk factors for ACL injury, we need to conduct large-scale, prospective risk factor 

studies that account for all relevant lower extremity anatomical and structural factors to 

determine how they may combine or interact to pose the greatest risk to the ACL. 

Because most anatomical and structural factors are not acutely affected by the ACL 

rupture, large, multifactorial, case-control study designs are also ideal for examining 

structural factors. 

 

2. To facilitate large-scale, multivariate risk factor studies, we need to develop more 

efficient, affordable, reliable, and readily available methods of measuring anatomical and 

structural factors. 

 

3. The lack of uniform measurement techniques for determining intercondylar notch 

dimensions make it difficult to clearly identify which specific dimensions are most 

predictive of increased risk for ACL injury.48 Specifically, we need to determine whether 

the size and geometry of the notch itself, the volume of the ACL, or some combination of 

these factors best characterizes risk for impingement and injury. 

 

4. Recent researchers have begun to elucidate the influence of anatomical and structural 

factors on weight-bearing knee-joint neuromechanics;12,15,16,43,44,49 which may be 

important in our injury-prevention efforts. Studies examining the combined effects of 

joint laxity, tibial geometry (lateral tibial slope, medial:lateral tibial slope ratio, coronal 

slope, medial condylar depth) and ACL cross-sectional area and volume, as well as 

interactions among these variables, on tibiofemoral joint biomechanics and ACL strain 

and failure are encouraged. 

 

5. Investigations of knee-joint geometry are largely based on measures of subchondral bone. 

Recent research50 suggests it may be important to also account for the overlying cartilage 

geometry. 

 



6. Some evidence suggests that an elevated body mass index (BMI) is predictive of future 

ACL injury in females20 and that artificially increasing BMI encourages dangerous 

biomechanical strategies.51,52 Additionally, recent research suggests that body 

composition may influence knee-joint laxity,53,183 potentially explaining why the 

combination of greater knee laxity and BMI substantially heightens the risk for ACL 

injury.20 Continued research on the influence of body composition is warranted. 

 

7. Although anatomical and structural factors are often considered nonmodifiable once a 

person is fully mature, we have limited knowledge of how these structural factors change 

during maturation or whether physical activity (or other chronic external loads) can 

influence this development over time, particularly during the critical growth periods. 

Prospective, longitudinal studies are needed to understand the underlying factors that 

cause one to develop at-risk anatomical and structural profiles during maturation while 

also taking into account relevant modifiable factors, such as body composition, 

neuromuscular properties, and physical activity. 

 

Genetic Risk Factors 

 

An ACL rupture is a multifactorial condition caused by a poorly understood interaction of both 

genetic and environmental (nongenetic) factors. The injury is most likely caused, at least in part, 

by environmental exposures and other stimuli interacting with a genetic (multiple-genes) 

background.54 Mutations within the COL1A1 and COL5A1 genes cause rare Mendelian 

connective tissue disorders, suggesting that there is limited or no redundancy within the biology 

of the collagen fibril. Common polymorphisms within genes, such as the collagen genes that 

encode for structural components or regulators of the collagen fibril, which is the basic building 

block of the ACL, are ideal candidates for examining genetic predisposition to ACL 

ruptures.54 Since the last ACL Research Retreat, considerable research has examined genetic 

associations with ACL injury. 

 

Important Knowns and Recent Advances 

 

1. A familial predisposition to ACL ruptures has been reported.55 

 

2. A functional polymorphism within the first intron of the COL1A1 gene is associated with 

risk for ACL ruptures in 2 independent white populations.56–58 The COL1A1 gene 

encodes for the α1(I) of type I collagen, which is the major building block of the collagen 

fibril of the ACL. 

3. Although the sample sizes are small, polymorphisms within 

the COL5A1 and COL12A1 genes have been shown to associate with risk for ACL 

ruptures in white females. The COL5A1 and COL12A1 genes encode for the α1(V) chain 

of type V collagen and the α1(XII) chain of type XII collagen, respectively.59,60 Both type 

V and XII collagens are important structural components of the collagen fibril. 

 

4. The COL5A1 polymorphism associated with ACL ruptures in females is located within a 

functional region of the 3′-untranslated region of the COL5A1 gene. It has been proposed 

that the 3′-untranslated region regulates, at least in part, the amount of type V collagen 



incorporated within the collagen fibril, which in turn alters the mechanical properties of 

the fibril.61,62 

 

5. Inferred haplotypes constructed from functional variants within 4 matrix 

metalloproteinase (MMP) genes (MMP10, MMP1,MMP3, and MMP12), clustered 

together on human chromosome 11q22, have been shown to associate with the risk of 

ACL rupture. After adjusting for weight, age, and sex, the MMP12 variant was 

independently associated with an increasing risk of noncontact ACL rupture.63 

 

6. The traditional intrinsic risk factors associated with ACL ruptures are also to a lesser or 

greater extent determined by both genetic and nongenetic factors. For example, some 

early evidence indicates that the same genetic variants in COL5A1associated with ACL 

injury are also associated with joint laxity64,184 and joint range of motion.65,66 

 

Unknowns and Directions for Future Research 

 

1. Most of the case-control genetic association studies published to date have used relatively 

small sample sizes, especially with respect to the sex-specific effects 

of COL5A1 and COL12A1. These studies need to be replicated in other, larger 

populations, which may require the establishment of international consortia. 

 

2. All the genetic studies to date have been done on European white populations, and the 

reported associations cannot be extrapolated to other populations. These studies therefore 

need to be repeated in other population groups. 

 

3. Mutations within many of the collagen and noncollagen encoding genes cause rare 

Mendelian connective tissue disorders. Common variants within these genes, which cause 

less severe changes in the amount of proteins produced or the structures of the protein 

may be ideal candidates for determining the biological variation within the structure of 

the ACL and susceptibility to injury and should therefore be studied. Unlike other 

multifactorial disorders caused by the interaction of both environmental and genetic 

factors (eg, type 2 diabetes), the individual genetic effects that influence the 

predisposition to ACL rupture appear to be quite large. 

 

4. Because most of the intrinsic risk factors are complex phenotypes, we need to better 

understand how genetic variants that partly determine these intrinsic risk factors alter 

susceptibility to ACL injury. 

 

5. Molecular genetics should be viewed as one of many techniques that can elucidate the 

biological mechanisms of ACL ruptures. Genetic association studies may highlight 

biological processes and pathways for ACL injury, which require additional investigation 

using other methods. Multidisciplinary approaches should therefore be encouraged (eg, 

connecting genetics to cell biology to tissue function to whole-body function). 

 

6. The effects of various stimuli, such as hormonal, mechanical loading, and other 

environmental stimuli, on the expression of genes associated with risk for ACL rupture 



need to be investigated. These studies will assist us in understanding how the associated 

genetic variants interact with stimuli to influence ACL homeostasis and remodeling. 

 

7. The interaction of hormones with genetic regulatory elements should be studied to 

explain female-specific anatomical differences (eg, small ACL) and increased risk for 

ACL ruptures. 

 

Hormonal Risk Factors 

 

Substantial differences in sex-steroid hormone concentrations likely underlie many of the sex-

specific characteristics that emerge during puberty. In particular, the large magnitudes and 

monthly variations in estrogen and progesterone concentrations that females experience continue 

to be an active area of ACL injury risk factor research. 

 

Important Knowns and Recent Advances 
 

1. The risk of suffering an ACL injury appears to be greater during the preovulatory phase 

of the menstrual cycle than during the postovulatory phase.67–71 However, there is no 

evidence that stabilizing hormone concentrations through the use of oral contraceptives 

protects against ACL injury.72,73 

 

2. The risk of ACL injury may be higher in elite female athletes who have elevated serum 

relaxin concentrations.74 

 

3. Sex hormone receptors on the human ACL (eg, estrogen, testosterone, and relaxin)75–

79 and skeletal muscle (estrogen, testosterone)80–82 suggest that sex hormones have the 

potential to directly influence these structures. 

 

4. Normal physiologic variations in sex hormone concentrations across the menstrual cycle 

have been associated with substantial changes in markers of collagen metabolism and 

production,83 knee joint laxity,40,84–88 and muscle stiffness.85However, large individual 

variations in hormone profiles across the menstrual cycle88 are associated with substantial 

interparticipant variations in the magnitude of these phenotypic changes.40,83,87,89 

 

5. Cyclic variations in knee laxity are of sufficient magnitude in some women to 

substantially alter their knee-joint biomechanics, particularly in the planes of motion in 

which the greatest magnitudes of knee-laxity change are observed.49,90,91 

 

6. The mechanical and molecular properties of the ACL are likely influenced not only by 

estrogen but by the interaction of several sex hormones, secondary messengers, 

remodeling proteins, and mechanical stresses.76,79,83,88,92–94 For example, interactions 

among mechanical stress, hormones, and altered ACL structure and metabolism have 

been observed in some animal models.95–97 

 

7. A time-dependent effect for sex hormones and other remodeling agents influences a 

change in ACL tissue characteristics.79,88 



 

Unknowns and Directions for Future Research 

 

1. Although epidemiologic studies have consistently pointed to the preovulatory phase as 

the time when ACL injury is more likely to occur,67–71 we know little of the underlying 

mechanism for this increased likelihood. Future researchers should examine the 

underlying sex-specific molecular and genetic mechanisms of sex hormones on ACL 

structure, metabolism, and mechanical properties and how mechanical stress on the ACL 

alters these relationships. 

 

2. Although good evidence indicates that females who experience substantial cyclic changes 

in their laxity across the menstrual cycle also experience substantial changes in their 

knee-joint biomechanics,49,90,91 it is not yet possible to clinically screen for these 

potentially high-risk individuals. We must understand the underlying processes that result 

in changes in ligament behavior (and other relevant soft tissue changes) so that we can 

better screen for these individuals and prospectively examine how these factors influence 

injury-risk potential. The effects of hormones and other stimuli on the synthesis of the 

less stable collagens and noncollagen proteins (eg, proteoglycans and other ground 

substance components) that regulate ligament biology should be investigated. 

 

3. Oral contraceptives do not appear to be protective against ACL injury risk,72,73 but they 

can vary substantially in the potency and androgenicity of the progestin compound 

delivered, which ultimately determines the extent to which they counteract the estrogenic 

effects.98 Because many physically active females use oral contraceptives, we need to 

better understand how the different progestins influence soft tissue structures, knee 

function, and ACL injury risk. Relevant comparisons should then be made between oral-

contraceptive users and eumenorrheic, amenorrheic, and oligomenorrheic females to 

determine if ACL injury risk or observed soft tissue changes vary between these groups. 

 

4. Given the time-dependent effect of sex hormones on soft tissue structures, we ought to 

determine how the time of injury occurrence lines up with acute changes in ACL 

structure and metabolism or knee laxity changes and how the rate of increase or the time 

duration of amplitude peaks in hormone fluctuation across the menstrual cycle plays a 

role in the magnitude or timing of soft tissue changes. The actual hormonal targets in the 

ACL also need to be identified in order to understand the relatively quick and time-

dependent hormonal effects on the ACL. 

 

5. When examining hormone influences in physically active females, it is critical that we 

better match the complexity of interparticipant differences in timing, magnitude, and 

interactive changes in sex hormone concentrations across the cycle to our study designs. 

Future researchers should (1) verify phases of the cycle (or desired hormone 

environment) with actual hormone measurements (considering all relevant hormones, 

including estrogen, progesterone, and possibly others) rather than relying on calendar day 

of the cycle and (2) obtain multiple hormone samples over repeated days to better 

characterize hormone profiles within a given female.99 

 



6. Because cyclic hormone concentrations affect soft tissues and knee-joint function, future 

studies comparing females with males should be conducted during the early follicular 

phase, when hormone levels are at their nadirs in females (preferably 3–7 days 

postmenses). 

 

Neuromuscular and Biomechanical Factors Associated with the ACL Injury Mechanism 

 

Neuromuscular and biomechanical (neuromechanical) factors, whether ascertained in vivo or in 

vitro, are generally derived from instrumented analyses of function that typically include 

kinematics, kinetics, and the timing and magnitude of the muscular activation and force 

production. Many of these measures are considered to be modifiable through training and have 

received considerable attention. 

 

Important Knowns and Recent Advances 

 

1. The ACL is loaded in vitro by a variety of isolated and combined compressive, sagittal 

and nonsagittal mechanisms during dynamic sport postures considered to be high risk.100–

106 This work collectively demonstrates high ACL strain under compression, tibial 

valgus, tibial internal rotation, and combined tibial valgus and internal rotation.104,107–110 

 

2. Quantitative analyses of actual injury events demonstrate rapid tibial valgus and internal 

rotation.111,112 

 

3. In vivo strain of the ACL is related to maximal load and timing of ground reaction 

forces.113 A more erect (eg, upright) posture is commonly associated with increased 

vertical ground reaction forces.114,115,185,186 Similarly, anterior tibial translation increases 

as demands on the quadriceps increase.116 Thus, this upright posture when contacting the 

ground during the early stages of deceleration tasks has been suggested to be associated 

with the ACL injury mechanism.117–120 

 

4. Given the inherent difficulties of measuring ACL strain in vivo, recent advances in our 

understanding of ACL loading have arisen from cadaveric and computer models of 

simulated landings. Such work has demonstrated that internal rotation results in greater 

ACL strain than external-rotation torque,107 that mechanical coupling of internal tibial 

torque and knee valgus results in increased ACL loading,108 and that combined tibial 

internal and valgus moments result in ACL strains near reported levels for tissue 

rupture.110 

 

5. Maturation influences biomechanical and neuromuscular factors.121–131,187,188 

 

6. Fatigue alters lower limb biomechanical and neuromuscular factors that are suggested to 

increase ACL injury risk.132–135,189The effect of fatigue on movement mechanics is most 

pronounced when combined with unanticipated landings, causing potentially adverse 

changes to central processing and control compromise.136 

7. Hip, trunk, core, and upper body mechanics are associated with lower extremity 

biomechanical and neuromuscular factors.51,118,137–141,190 Further, a recent modeling and 



optimization study demonstrated that upper body kinematics influence valgus knee 

loading during sidestepping and that multiple kinematic changes occur simultaneously to 

reduce knee loading.142 

 

Unknowns and Directions for Future Research 
 

1. We still do not know the loads and neuromuscular profiles that cause noncontact ACL 

rupture, an understanding that is central to improving future injury-prevention strategies. 

Because we do not have precise descriptions of the mechanisms of in vivo ACL rupture, 

video from actual injury situations must be accumulated (along with control videos of 

these injured athletes before they were injured for comparison) to allow us to better 

understand the injury mechanism. Additionally, cadaveric, mathematical, in vivo 

kinematic, and imaging research approaches should be combined to best understand the 

loads and neuromuscular profiles that cause noncontact ACL rupture.191 

 

2. Although translating laboratory biomechanical measures obtained during movement 

testing to the field is important, the optimal ways to assess movement in the laboratory 

environment are still being debated. We need to develop tasks designed to stress the joint 

systems that attempt to mimic injury mechanisms and are realistic to the mechanistic 

purpose of the study, as well as better techniques to measure the 3-dimensional 

movements and loading associated with these tasks. To better understand how movement 

patterns and other structures in the kinetic chain affect ACL loads, we must continue to 

develop, improve, and validate quality laboratory-based models (eg, computational, 

cadaveric) that noninvasively estimate in vivo ACL forces and strain. Care should be 

taken to not overgeneralize results from 1 specific task to other tasks with different 

mechanical demands.192 

 

3. Although we understand how the lumbo-pelvic-hip (LPH) complex affects knee 

biomechanics in general, we do not know from the limited research models estimating in 

vivo ACL strain how these trunk and hip biomechanical factors affect in vivo ACL strain 

during highly dynamic activities known to cause ACL injury. The influence of the LPH 

complex on ACL loads must be better characterized. Additionally, we do not know if 

LPH mechanics are a cause of or a compensation for potentially dangerous knee 

biomechanics. 

 

4. We do not yet understand the role of neuromechanical variability on the risk of indirect 

or noncontact ACL injury. Are there optimal levels of variability, and do deviations from 

these optimal levels increase the risk of injury? We may need to rethink our experimental 

design to take advantage of nontraditional analyses for assessing variability. 

 

5. Even though decreased reaction times, processing speed, and visual-spatial disorientation 

have been observed in athletes sustaining an ACL injury,143 whether noncontact ACL 

injury is an unpreventable accident stemming from some form of cognitive dissociation 

that drives central factors and the resulting neuromuscular and biomechanical patterns is 

unknown. We should continue to expand research models and analyses to include 

assessments of central processes (eg, automaticity, reaction time), cognitive processes 



(eg, decision making, focus and attention, prior experience [eg, expert versus novice]), 

and metacognitive processes (eg, monitoring psychomotor processes). 

 

6. We do not know if gross failure of the ACLis caused by a single episode or multiple 

episodes. 

 

7. Although it is generally accepted that the ACL injury mechanism is multifactorial, 

resulting from the interplay of many different neuromuscular, biomechanical, anatomical, 

genetic, hormonal, and other factors, studies that consider only individual factors in 

isolation (eg, kinematic or kinetic or neuromuscular or anatomic) remain the norm in the 

literature. To best understand movement patterns linked to noncontact ACL injury, 

researchers should move toward a comprehensive collection of kinetic, kinematic, and 

neuromuscular data and as much data related to anatomy, genetics, hormones, and other 

factors as possible. These multifactorial studies will allow us to determine important 

interactions and interdependencies among factors. 

 

8. In identifying potential factors that contribute to the injury mechanism, we should 

consider whether observed kinematics, kinetics, and muscle-activation strategies are root 

causes of increased ACL loading or compensations for deficiencies in other components 

of the kinetic chain. Studies specifically designed to evaluate cause and effect (ie, highly 

controlled human movement studies with 1 variable manipulated or simulation studies) 

could help advance this area. 

 

9. Further insight into the dynamic-restraint systems are needed to more fully understand 

ACL loading mechanisms. Further work on muscle properties beyond absolute strength 

(eg, stiffness, muscle mass, rate of force production) is warranted. 

 

10. We do not yet know whether females are at greater risk of noncontact ACL injury due to 

female-specific injury mechanisms or if the same injury mechanisms apply but the risk 

factors are merely more prevalent in females. We must continue to move away from 

purely descriptive sex-comparison studies and focus more on the underlying mechanisms 

associated with the observed sex differences and, more directly, ACL injury risk and 

prevention as appropriate. 

 

11. Examining the influence of the maturational process on knee biomechanics and 

specifically ACL loads may allow unique insights into the observed difference in injury 

rates by sex occurring during the early stages of physical maturation and into 

mechanisms of injury across the continuum of physical attributes and capabilities. 

 

12. The inability of most individual researchers to perform large-scale studies due to funding, 

personnel, and geographic restrictions has hindered our progress in understanding the 

ACL injury mechanism. Sharing datasets could potentially allow for investigations with 

the needed population sizes. Several actions that would facilitate such data sharing 

include but are not limited to the following: 

a. Common operational definitions of terms, such as core stability, dominant 

limb, exposure, activity level, experience, etc, need to be established.  



b. Voluntary data-collection standards, including activities, methods, and 

demographics, are required to enable pooling of data.  

c. Creation of a central repository for neuromechanical datasets and a clearinghouse 

mechanism for using such datasets could greatly facilitate multicenter and 

transdisciplinary collaboration. 

 

Risk Factor Screening and Prevention 

 

Although intervention programs have been shown to reduce the incidence of ACL injuries,69,144–

149 overall ACL injury rates and the associated sex disparity have not yet diminished. There is 

still much we need to learn to maximize the effectiveness of these programs and to identify 

highly sensitive screening tools to target those at greatest risk for injury. 

 

Important Knowns and Recent Advances 

 

1. Clinically oriented screening tools (eg, Landing Error Scoring System (LESS) and tuck 

jump) show good agreement with laboratory-based biomechanics (concurrent 

validity).150–152 

 

2. Clinically oriented screening tools are sensitive in detecting changes in movement quality 

over time.153,154 

 

3. The ability of clinically oriented screening tools to identify individuals at risk for future 

ACL injury may be population specific (eg, sex, age, sport).152,155,193 

 

4. Prospective biomechanical risk factors for ACL injury may include variables that are not 

directly associated with ACL loading or injury events.156,194 

 

5. Neuromuscular control and strength of the hip musculature play an important role in knee 

biomechanics.157–163,195 

 

6. Individuals with a personal history of ACL injury are at high risk for future ACL injury 

of the ipsilateral or contralateral leg.164–166 

 

7. Multicomponent dynamic warm-up–style preventive training programs are safe and 

effective for reducing ACL injury rates.144,147,167 

 

8. Preventive training programs with successful outcomes (eg, injury-rate reduction, 

improved neuromuscular control or performance) are conducted 2–3 times per week and 

last for 10–15 minutes at a minimum.69,144,146–148,168–174 

9. Improvements in movement quality after 12 weeks of training do not appear to be 

retained once preventive training programs end. Thus, longer-duration or higher-intensity 

training programs may be required to better facilitate retention and transfer.154 

 



10. Ensuring proper exercise technique and quality is an important factor for program 

effectiveness. Feedback should emphasize successful performance and ignore less 

successful attempts; this benefits learning because of its positive motivational effects.175 

 

11. Real-time feedback can change landing biomechanics.176–178,196 

 

12. The transition from conscious awareness during technique training sessions to 

unexpected and automatic movements during training or game involves complicated 

motor- control elements that might not fit in explicit learning strategies.179 

 

13. Age-appropriate preventive training programs can be effective at modifying 

biomechanics in children.153,180 

 

Unknowns and Directions for Future Research 

 

1. We do not know which elements (eg, specific faulty movements, combination of faulty 

movements) of clinically oriented screening tools predict future ACL injury risk 

(predictive validity). 

 
2. We do not know the reliability, validity, sensitivity, and specificity of current screening 

tools (LESS, tuck jump) and thresholds or cutoff points in order to determine whether a 

person is at high or low risk.193,197 

 

3. We need to develop other clinically oriented screening tools that have good sensitivity 

and specificity for predicting future ACL injury risk. 

 

4. We must understand how clinically oriented screening tools (eg, the LESS and tuck 

jump) predict other lower extremity injuries in addition to ACL injuries.  

 

5. Various ACL injury-prevention programs that incorporate elements of balance training, 

plyometric training, education, strengthening, and technique training or feedback have 

been shown to reduce ACL injury69,144–149 or alter biomechanical and neuromuscular 

variables thought to contribute to ACL injury.168,170–174,181 However, we do not know 

which program elements are responsible for the reduced injury risk or biomechanical 

changes. Future research is necessary to determine which components are effective and 

necessary. 

 

6. Technique training or feedback is frequently provided during preventive training 

programs to improve movement patterns. However, more study is needed to determine 

the most effective training variables (eg, frequency, timing, focus of attention) for 

improving movement patterns and optimizing the transfer of these learned movement 

patterns to sport-specific movements performed on the field. 

 

7. We ought to continue to evaluate how a participant's sex, age, skill level, and type of 

sport should be considered in the type and variety of exercises prescribed and technique 

training or feedback provided.153,180,198 



 

8. We need to identify the most most appropriate age to begin implementing preventive 

training programs. 

 

9. We must determine the performance enhancement benefits associated with regularly 

performing preventive training programs. 

 

10. We need to assess the effects of preventive training on reducing ACL injury rates in those 

with a history of ACL injury. 

 

11. We should understand how preventive training programs influence lower extremity 

injuries in addition to ACL injuries. 

 

12. We need to determine the cost effectiveness of current preventive training programs. 

 

13. Because compliance has a strong influence on the success of ACL injury-prevention 

programs, research is essential to identify the barriers and motivational aspects that 

influence compliance (eg, type of feedback provided; coach or athlete knowledge, 

attitudes, and beliefs regarding prevention programs; design of prevention program; 

individual leading the prevention program). We need to learn if streamlining prevention 

programs, thus making them more palatable to the public, will improve compliance. 

 

14. Although well-controlled ACL injury-intervention programs reduce the incidence of 

ACL injuries,69,144,145,147,148 we have yet to effectively implement multifaceted programs 

in different settings that are sustainable over time (widespread implementation with high 

compliance rates and retention over the long term). Developing packaged preventive 

training programs that can be implemented broadly across different settings through 

appropriately educated and trained coaches or team leaders may improve compliance and 

efficacy. To that end, the following should be considered when developing large-scale 

injury-prevention programs in the future: (a) provide low-cost, brief time, packaged 

interventions; (b) adapt the program based on contextual factors for that setting (eg, sport, 

age, sex, environment); (c) incorporate lay people (eg, coaches instead of athletic trainers 

or strength and conditioning specialists) to implement the program for that setting and 

population; (d) educate and obtain organizational buy-in from all levels (eg, school, club, 

administrators, coaches, players, parents); (e) attempt to embed programs within an 

existing system when possible (part of the warm-up or conditioning program, team 

challenge, etc); and (f) develop written policies and procedures (specifics of program, 

when to perform, how often to perform, etc). 
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